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FORCE AT A POINT IN THE INTERIOR OP A SEMI-INFINITE SOUP 

In a paper   under the same title, the solution of the linear equa- 

tions of equilibrium of an elastic body was given for the case of a force 

acting at a point within an isotropic body bounded by a plane. The result 

was obtained by starting with Kelvin's solution for a force in an infinite 

body and guessing the nuclei of strain to add outside of the semi-infinite 

body so as to annul the tractions on the plane boundary. In the present 

paper it is shown how these results may be obtained, directly, by means of 

an application of potential theory. 

Pankovitch functions 

In an isotropic elastic body in equilibrium, the displacement u is 
(2) " governed by the equationv; 

X?2u +   f4   ?y.u  + p =0 (1) 

where jx   is the shear modulus, V   is Poisson's ratio and F   is the body 

force per unit of volume. 

For an isotropic body, the stress, GT -, is related to the displace- 
M 

ment by 

cr  =   ^VuJ   -f juNu t utf) (2) 

t1*  R. D. Mindlin, Hiysics, Vol. 7 (1936), pp. 195-202. 

^2'  For the vector notation used in this paper, see C. E. Wsathi 
Advanced Vector Analysis, G. Bell and Sons, Ltd., London, 1928. 
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where   A *   2jsvA\-2v). 

By HeLnholtz's theorem       . tl   may be resolved into lamellar and sole- 
M 

noidal components: 

u » Vtf   +   V*H ,     V-H-0, (3) 

so that  (1) may be written 

uVx(etVH +V*H)  + F -0 (4) 

where   oc = 2 (\-J>jJ(\-2v) . 

The quantity in parenthesis in  (4) is a vector, say,  B «• c B   •*- jEL -f-kB 

i.e., 

<* r-<f    + V« H = B     , (5) 

^^7aB - -F     • (6) 

Operating on (5) with tf« , we find 

the complete solution of which is 

loue   «= r-B +(9     , (8) 

where ^ is a scalar function, which satisfies 

s v'f - r l , (9) 

and f - t X   t j y -t- to Z    is the position vector. 

Substituting   (8) in   (3) and eliminating ^ * H    by means of   (5)> there 

results 

^\7aB   »-F (n) 

Weatherburn, p. UU> 
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JAV**   = r-F  . (12) 

Thus the displacement is expressed in terms of the Papkovitch functions) E3 

and £   , whose Iaplacians are known if the body force F is known. 

The proof of completeness of the Papkovitch functions, given above, 

is an extension, to include the body fores, of one given in a previous 

paper'* , where B and @  were called Papkovitch '  functions after the 

originator of the solution (10) of the elasticity equations. Recent writers 

associate these functions with the name of Boussinesq  , who introduced B 

and 0   , but employed functions of a different type where 8 and O could 

have been used. 

The value of a function V » at any point in a region, may be ex- 

pressed in terms of its values at the boundary, its Laplacian and Green's 

(7) 
function, Q , for the region, by means of Green's formula 

-+irV* JVnVGdS   t JG PaVJv     . (13) 

For the region z ^ 0  » Green's function is 

& =  r%-
1  - r~% (U) 

where 

(*' R.  D. Mlndlin, Bull.  Am. Math.  Soc., Vol. 42   (1936), pp.  373-376. 

'*' P. F.  Papkovitch, Comptes Rendus, Acad. des Sciences, Paris, Vol.  195 
(1922), pp. 513-515 and 754-756. 

1  ' J.  Boussinesq, "Application des Potentiels a 1'Etude de l'Equilibre et 
du Mouvement des Solides Elastiques," Gauthier-Villars, Paris, 1885, pp. 63 
and 72. 

w/ Weatherbmrn, p.  34. 
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rx = (t-ff + b-v)1 t (2-tf (15) 

^ - Lt-K)x   +h-it + (*•$)* <*) 

in which (x^Z ) are the coordinates of a point P(t^t2 ) in the region 

***& (%>% 5 )» C ^> ^ -5 ) are the coordinates of a source point ($(%, ^ $ ) 

and its image <^'($, "fl -J )> respectively. 

Force at a Point 

Kelrin's definition of a force at a point takes the following foray 

in the present case. Consider a distribution of body forces F in a closed 

region T within Z *• 0 .  with F * 0  outside T but within z » 0.  uimir.iah 

T indefinitely^ always enclosing the point C (o,oyc   ), but let 

Ji~~   /*FdV = P (17) 

where P is a constant force at C . 

For later use, we note that the limit, as T approaches zero, of 

Qfcftt)  =c(o^jC)      , (18) 

VM-c'h^) i (19) 

r
l =  xa + ^ + (z-c)1- R,1   ^ (20) 

rx
l «   X1 +yS(2 + c)a = R^    ^ (21) 

G~   H? P-        o (22) 

?>* " 8z     [R RX J        ' (23) 
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I 

= 'Mk~Vi • ff-»--/rfi-Jrl <25> 

Force Normal to the Plane Boundary 

In this case we take P, = F„ * 0    and Bx = B = 0 .  The remaining 

Papkovitch (in this case Bousstnesq) functions, B, and (3  , must satisfy 

the condition of vanishing traction on z - 0*    Thus, we have, from (2) 

and (10), on Z=0 

*. • tfaf'MTl -&-] - ° ' (26) 

_^_ rv.- J„V2&- -JSCI - /> (27) 

The function in brackets in (26) is one whose Laplacian 

is known throughout z > 0 and whose boundary value is zero. Hence, by (13), 

Now, integrating the first term in the volume integral by parts, 

i 
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The surface integral in   (31) vanishes because p ~Gm0 on the boundary of 

the body.    Then, ty  (17) and  (23), 

(32) 

Similarly, integrating by parts twice and using (17), (18) and (24.), 

Hence 

*')* - If- - 4r [>')(* • ^) + c^fc - ^)],eu) 

where one integration with respect toz has been performed. (The arbitrary 

function of x and y , thereby introduced, must vanish since 2(l-p)B - DA/dz 

must vanish as Z—*o°). 

Returning to the boundary conditions, we note that (27) and (28) 

can be integrated with respect to x and y, respectively, so that, on z = 0} 

(l-lpfe-  |§- =0  . (15) 

The Laplacian 

"* [('-J") B. - H-] - - ***- F, - J- ^&1    (,6> 

is known throughout z ">• O   and hence, by (13), 

(i-2"te-3f- '^J4N
F

. +/H
?F

')> •b7) 
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By the sane process as befozv, using (17)> (18), (22) and (23), we find 

Finally, from (H) and (38), 

B.= jUi^+*££*>] (39) 

These two functions constitute the solution for the case cf the force 

at (6 0fC   ) normal to the plane boundary. 

Force Parallel tQ the Plane Boundary 

In this case we take F- = f' •= 0     and  Bv -& •  The boundary condi- 

tions then become, on 2.-0    , 

s - ^J[(M") ^ - * life - t&d= °   •   fe,) 

Differentiating  (42) with respect tow and  (43) with respect to x and sub- 

tracting, we  find,  on.z=0 , 

Hence,  on z -0 , 

9B< 
^~   = 0 (u) 
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Also, in Z?0   , 

Honce, from  (13), 

V      T>z Ji       dz 

3Q, _j  
az 4tr// 

k__ J_ /J- +.   '  ) 

by  (32).    Thus 

B    =     P»      /-^ + -J-]      . (45) 

From  (A3), on  z-= 0 , 

by (44.).    Also, in   2 ^0 

Hence, by  (13) 

06) 

But the right hand side of (46) vanishes since £ —-»0 as T—» 0. Hence 

M^K - If- =0 a?) 
throughout the region Z 5 0 . 

From (41), on 2 * 0 , 
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y 

2/,.p)m^_ _^_ ^.iv^__x^_ =^ (43) 

Now, on   z " 0 , we have,  from   (45), 

lv  3B«    _     9^B«     __ (l-2v)Pjr _ 3Rcax 
iV   3x x    ?zJ 2TTMK HTM*. 

where   Pa   ' x1   + ^  + C1    .     But, on Z - 0 , 

and 
P*C       d*   /l_ \ _   j^c'x 

27T><     ax3z\fv>J =   27T//^ 

Hence,   U8) may be rewritten as 

(49) 

on z - 0 . The Laplacian of the left side of (49) is, In the region z»0, 

Hence, from (13)* 

Ihe first tern in the integrand vanishes since £ —*0 as T-»0, Ihe second 

tern is integrated by parts and the surface integral vanishes, leaving 

y = j'ip  f 
A.  4TTJ/    J 
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which, by (17) and (25), is 

y = _ (tiliB   *. l± _ jj (51) 

Then, from (51),  (49) and (45), 

or 

Finally, from (51) and (47), we have 

B»    -   lTT/z^Vz+c)    -    J$71^- (54) 

These two functions, in addition to (45), comprise the solution for the 

case of the force at (CtOt c ) parallel to the plane boundary. 

Comparison with Previous Besulta 

The previous solution, mentioned in the Introduction, was given in 

terms of the Galerkin vector F (not to be confused with the body force F 

in the present paper). 

For the case of a force normal to the plane boundary the solution 

obtained was 
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^^hr{R'+[?"H-'h ~icrA (56) 

and, for the case of a force parallel to the plane boundary, 

+ -^l-v)(l-Jv)|{z +c)>yfe + z +c)- I^J 1 

+M^T{2CX/R> +*<y-*4x<erfo**+e)\   -<57) 

The relation between the Galerkin and Papkovitch functions has been 

shown to be 

jiB   =  (1-*)V*F (58) 

Mfi   «(l-v)(l7.F-r7lF) (59) 

By inserting  (56) and (57) in (58) and  (59), it nay be verified that 

the previous and present solutions are identical. 
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